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Abstract

When modeling inhomogeneous spatial point patterns, it is of interest to fit a para-

metric model for the first order intensity function (FOIF) of the process in terms of

some measured covariates. Estimates for the regression coefficients, say β̂, can be

obtained by maximizing a Poisson maximum likelihood criterion (Schoenberg, 2004).

Little work has been done on the asymptotic distribution of β̂ except in some special

cases. In this article, we show that β̂ is asymptotically normal for a general class of

mixing processes. To estimate the variance of β̂, we propose a novel thinned block

bootstrap procedure, which assumes that the point process is second-order reweigthed

stationary. To apply this procedure, only the FOIF but not any high-order terms of the

process needs to be estimated. We establish the consistency of the resulting variance

estimator, and demonstrate its efficacy through simulations and an application to a real

data example.

KEY WORDS: Block Bootstrap, Inhomogeneous Spatial Point Process, Thinning.

1



1 Introduction

A main interest when analyzing spatial point pattern data is to model the first-order inten-

sity function (FOIF) of the underlying process that has generated the spatial point pattern.

Heuristically, the FOIF is a function that describes the likelihood for an event of the process

to occur at a given location (see Section 2 for its formal definition). We say a process is

homogenous if its FOIF is a constant and inhomogeneous otherwise. In practice, we often

wish to model the FOIF in relation to some measured covariates. For example, for the

Beilschmiedia pendula Lauraceae (BPL) data given in Section 5, we would like to model

the FOIF in terms of two important variables of landscape features: elevation and gradient.

Since the FOIF characterizes the probability finding a BPL tree at a given location with

the associated elevation and gradient values, the study of this function can yield valuable

insight on how these landscape features affect the spatial distribution of BPL trees. If a

significant relation can be established, then this will provide evidence in support of the

niche assembly theory, which states that different species benefit from different habitats

determined by local environmental features (e.g. Waagepetersen, 2007).

To model the FOIF, we assume that it can be expressed as a parametric function of

the available covariates. Specifically, let N denote a spatial point process defined over R2,

with the FOIF at s ∈ R2 given by λ(s; β), where β is a p× 1 vector of unknown regression

coefficients associated with the covariates, and let D be the region where a realization of

N has been observed. Our goal is then to estimate and make inference on the regression

coefficients β.
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To estimate β, we consider the following maximum likelihood criterion:

U(β) =
1

|D|
∑

x∈D∩N

log λ(x; β)− 1

|D|
∫

D

λ(s; β) ds. (1)

The maximizer of (1) is taken as an estimator for β (denoted by β̂ throughout this section).

Note that (1) is proportional to the true maximum likelihood if N is an inhomogeneous

Poisson process, i.e. when the events of the process occurring in disjoint sets are completely

independent. For the BPL example, however, the locations of the BPL trees are likely to be

clustered, possibly due to seed dispersal, and/or correlation among environmental factors

that have not been accounted for by the model. Schoenberg (2004) showed that under some

mild conditions, β̂ obtained by maximizing (1) is still consistent for β for a class of spatial-

temporal point process models, even if the process is not Poisson. However, he did not

provide the asymptotic distribution of β̂. Waagepetersen (2007) significantly extended the

scope of the method by deriving asymptotic properties of β̂ including asymptotic normality

for a wide class of spatial cluster processes.

To make inference on β, we will need information on the distributional properties of

β̂. One standard approach is to derive the limiting distribution of β̂ under an appropriate

asymptotic framework, and then use it as an approximation for the distribution of β̂ in a

finite sample setting. We note that currently available asymptotics for inhomogeneous spa-

tial point processes are inadequate since they either assume complete spatial independence,

i.e. the process is Poisson (e.g. Rathbun and Cressie, 1994), or use a parametric model for

the dependence of the process (e.g. Waagepetersen, 2007). For data arising from biolog-

ical studies such as the BPL data, however, the underlying biological process generating

the spatial point patterns is rather complex and often not well understood. Thus, the use
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of a specific form for the dependence may be debatable and could lead to incorrect infer-

ence on the regression parameters β (since the distribution of β̂ depends on the dependence

structure of the process).

In this paper, we study the distributional properties of β̂ under an increasing domain

setting. To quantify the dependence of the process, we use a more flexible, model-free

mixing condition (Section 2), but do not assume any specific parametric structure on the

dependence. Our main result shows that under some mild conditions, the standardized

distribution of β̂ is asymptotically normal. If the variance of β̂ is known, approximate con-

fidence intervals for β can then be obtained so the inference on β becomes straightforward.

Thus our result further extends the scope of applications of (1) beyond Schoenberg (2004)

and Waagepetersen (2007).

One complication in practice is that the variance of β̂ is unknown and thus must be

estimated. From Theorem 1 in Section 2, we see that the variance of β̂ depends on the

second-order cumulant function (SOCF) of the process, a function that is related to the

dependence structure of the process. To avoid specifying the SOCF, we develop a non-

parametric thinned block bootstrap procedure to estimate the variance of β̂ by using a

combination of a thinning algorithm and block bootstrap. Specifically, in the thinning step,

we retain (i.e. do not thin) an observed event from N with a probability that is proportional

to the inverse of the estimated FOIF at the location of the event. If N is second-order

reweighted stationary (see Section 2) and if β̂ is close to β, then the thinned process should

resemble a second-order stationary (SOS) process. We show in Section 3 that the variance

of β̂ can be written in terms of the variance of a statistic Sn, where Sn is computed from the
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thinned process and is expressed in terms of the intensity function only. The task of esti-

mating the variance of β̂ is thus translated into estimating the variance of a statistic defined

on a SOS process, which we can accomplish by using block bootstrap (see Section 3 for

details). We prove in Section 3 that the resulting variance estimator is L2 consistent for the

target variance, and perform a simulation study in Section 4 to investigate the performance

of the proposed procedure. To illustrate its use in a practical setting, we also apply the

proposed procedure to the BPL data in Section 5.

Before proceeding to the next section, we note that resampling methods including block

bootstrap have been applied extensively in spatial statistics (e.g. Politis et al., 1999; Lahiri,

2003). Most of these methods, however, were developed for stationary, quantitative spa-

tial processes that are observed on a regularly-spaced grid. In the regression setting also

for quantitative processes, Cressie (1993, Section 7.3.2) discussed both semiparametric

and parametric bootstrap methods to resample the residuals whereas Sherman (1997) pro-

posed a subsampling approach. Politis and Sherman (2001) and McElroy and Politis (2007)

considered using subsampling for marked point processes. The former assumed the point

process to be stationary, whereas the latter assumed it to be Poisson. None of the aforemen-

tioned resampling procedures can be used for inhomogeneous spatial point processes due to

the unique feature of the data. Note that an inhomogeneous spatial point process by nature

is not quantitative, observed at random locations, nonstationary and can be non-Poisson.
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2 Notation and Preliminary Asymptotic Results

Let N be a two-dimensional spatial point process observed over a domain of interest D.

For a Borel set B ⊂ R2, let |B| denote the area of B, and N(B) denote the number of

events from N that fall in B. We define the kth-order intensity and cumulant functions of

N as:

λk(s1, · · · , sk) = lim
|dsi|→0

{
E[N(ds1) · · ·N(dsk)]

|ds1| · · · |dsk|
}

, i = 1, · · · , k,

Qk(s1, · · · , sk) = lim
|dsi|→0

{
Cum[N(ds1), · · · , N(dsk)]

|ds1| · · · |dsk|
}

, i = 1, · · · , k,

respectively. Here ds is an infinitesimal region containing s and Cum(Y1, · · · , Yk) is the co-

efficient of ikt1 · · · tk in the Taylor series expansion of log{E[exp(i
∑k

j=1 Yjtj)]} about the

origin (e.g. Brillinger, 1975). For the intensity function, λk(s1, · · · , sk)|ds1| · · · |dsk| is the

approximate probability for ds1, · · · , dsk to each contain an event. For the cumulant func-

tion, Qk(s1, · · · , sk) describes the dependence among sites s1, · · · , sk, where a close-to-zero

value indicates near independence. Specifically, if N is Poisson, then Qk(s1, · · · , sk) = 0

if at least two of s1, · · · , sk are different. The k-th order cumulant (intensity) function can

be expressed as a function of the intensity (cumulant) functions up to the k-th order. See

Daley and Vere-Jones (1988, p.147) for details.

We study the large sample behavior of β̂ under an increasing-domain setting, where β̂

is obtained by maximizing (1). Specifically, consider a sequence of regions, Dn. Let ∂Dn

denote the boundary of Dn, |∂Dn| denote the length of ∂Dn, and β̂n denote β̂ obtained over

Dn. We assume

C1n
2 ≤ |Dn| ≤ C2n

2, C1n ≤ |∂Dn| ≤ C2n for some C1 ≤ C2 < ∞. (2)

6



Condition (2) requires that Dn must become large in all directions (i.e. the data are truly

spatial) and that the boundary is not too irregular. Many commonly used domain sequences

satisfy this condition. To see an example, let A ⊂ (0, 1]× (0, 1] be the interior of a simple

closed curve with nonempty interior. If we define Dn as A inflated by a factor n, then Dn

satisfies condition (2). Note that this formulation incorporates a wide variety of shapes, e.g.

rectangular and elliptical shapes.

To formally state the large sample distributional properties of β̂n, it is necessary to

quantify the dependence in N . We do so by using the model-free strong mixing coefficient

(Rosenblatt, 1956), which is defined as follows:

α(p; k) ≡ sup{|P (A1 ∩ A2)− P (A1)P (A2)| : A1 ∈ F(E1), A2 ∈ F(E2),

E2 = E1 + s, |E1| = |E2| ≤ p, d(E1, E2) ≥ k}.

In the above, the supremum is taken over all compact and convex subsets E1 ⊂ R2, and

over all s ∈ R2 such that d(E1, E2) ≥ k, where d(E1, E2) is the maximal distance between

E1 and E2 (e.g. Guan et al., 2006), and F(E) is the σ-algebra generated by the random

events of N that are in E. We assume the following mixing condition on N :

sup
p

α(p; k)

p
= O(k−ε) for some ε > 2. (3)

Condition (3) states that for any two fixed sets, the dependence between them must decay to

zero at a polynomial rate of the inter-sets distance, k. The speed in which the dependence

decays to zero also depends on the size of the sets (i.e. p). In particular, for a fixed k,

condition (3) allows the dependence to increase as p increases. Any point process with

a finite dependence range, e.g. the Matérn cluster process (Stoyan and Stoyan, 1994),
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satisfies this condition. Furthermore, it is also satisfied by the log Gaussian Cox process

(LGCP), which is very flexible in modeling environmental data (e.g. Møller et al., 1998), if

the correlation of the underlying Gaussian random field decays at a polynomial rate faster

than 2 + ε and has a spectral density bounded below from zero. This is due to Corollary 2

of Doukhan (1994, p.59).

In addition to conditions (2) and (3), we also need some mild conditions on the intensity

and cumulant functions of N . In what follows, let f (i)(β) denote the ith derivative of f(β).

We assume

λ(s; β) is bounded below from zero, (4)

λ(2)(s; β) is bounded and continuous with respect to β, (5)

sups1

∫ · · · ∫ |Qk(s1, · · · , sk)|ds2 · · · dsk < C for k = 2, 3, 4. (6)

Conditions (4) and (5) are straightforward conditions that can be checked directly for a pro-

posed FOIF model. Condition (6) is a fairly weak condition. It also requires the process N

to be weakly dependent, but from a perspective that is different to (3). In the homogeneous

case, (6) is implied by Brillinger mixing, which holds for many commonly used point pro-

cess models such as Poisson cluster process, a class of doubly stochastic Poisson process

(i.e. Cox process), and certain renewal process (e.g. Heinrich, 1985). In the inhomoge-

neous case, Qk(s1, · · · , sk) can often be written as λ(s1) · · ·λ(sk)ϕk(s2 − s1, · · · , sk − s1),

where ϕk(·) is a cumulant function for some homogeneous process. Then (6) holds if λ(s)

is bounded and
∫ · · · ∫ |ϕk(u2, · · · ,uk)|du2 · · · duk < C. Processes satisfying this condi-

tion include, but are not limited to, the LGCP, the inhomogeneous Neyman-Scott process

(INSP; Waagepetersen, 2007), and any inhomogeneous process that is obtained by thinning
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a homogeneous process satisfying this condition.

Theorem 1. Assume that conditions (2)-(6) hold, and that β̂n converges to β0 in probability,

where β0 is the true parameter vector. Then

|Dn|1/2(Σn)−1/2(β̂n − β0)
d→ N(0, Ip),

where Ip is a p× p identity matrix,

Σn = |Dn|(An)−1Bn(An)−1

An =

∫

Dn

λ(1)(s; β0)[λ
(1)(s; β0)]

′

λ(s; β0)
ds

Bn = An +

∫ ∫

Dn

λ(1)(s1; β0)[λ
(1)(s2; β0)]

′

λ(s1; β0)λ(s2; β0)
Q2(s1, s2)ds1ds2.

Proof. See Appendix A.

We assume in Theorem 1 that β̂n is a consistent estimator for β0. Schoenberg (2004)

established the consistency of β̂n for a class of spatial-temporal processes under some mild

conditions. He assumed the spatial domain was fixed but the time domain increased to

infinity. His results can be directly extended to our case. Therefore, we simply assume

consistency in Theorem 1. In connection with previous results, our asymptotic result co-

incides with that of Rathbun and Cressie (1994) in the inhomogeneous Poisson process

case and Waagepetersen (2007) in the inhomogeneous Neyman-Scott process case, respec-

tively. Furthermore, note that Σn depends only on the first- and second-order properties of

the process.
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3 Thinned Block Bootstrap

3.1 The Proposed Method

Theorem 1 states that |Dn|1/2(Σn)−1/2(β̂n−β0) converges to a standard multivariate normal

distribution as n increases. This provides the theoretical foundation for making inference

on β. In practice, however, Σn is typically unknown and thus must be estimated. From

the definition of Σn in Theorem 1, we see that two quantities, i.e. An and Bn, need to be

estimated in order to estimate Σn. Note that An depends only on the FOIF and thus can be

estimated easily once a FOIF model has been fitted to the data. The quantity Bn, however,

also depends on the SOCF Q2(·). Unless an explicit parametric model is assumed for Q2(·),

which, as argued in Section 1, may be unrealistic, it is difficult to directly estimate Bn. In

this section, we propose a thinned block bootstrap approach to first estimate a term that is

related to Bn, and then use it to produce an estimate for Bn.

From now on, we assume that the point process N is second-order reweighted sta-

tionary (SORWS), i.e. there exists a function g(·) defined in R2 such that λ2(s1, s2) =

λ(s1)λ(s2)g(s1 − s2). The function g(·) is often referred to as the pair correlation function

(PCF; e.g. Stoyan and Stoyan, 1994). Note that our definition of second-order reweighted

stationarity is a special case of the original definition given by Baddeley et al. (2000).

Specifically, these two definitions coincide if the PCF exists. Examples of SORWS pro-

cesses include the INSP, the LGCP, and any point process obtained by thinning a SORWS

point process (e.g. Baddeley et al., 2000). We also assume that β0 is known. Thus the

dependence of the FOIF on β will be suppressed in this section. In practice, the proposed
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algorithm can be applied by simply replacing β0 with its estimate β̂. The theoretical justi-

fication for using β̂ is given in Appendix C.

The essence of our approach is based on the fact that a SORWS point process can be

thinned to be SOS by applying some proper thinning weights to the events. Specifically,

we consider the following thinned process:

Ψ =
{
x : x ∈ N ∩Dn, P (x is retained) =

mins∈Dn λ(s)

λ(x)

}
. (7)

Clearly Ψ is SOS since its first- and second-order intensity functions can be written as:

λn = min
s∈Dn

λ(s) and λ2,n(s1, s2) = (λn)2g(s1 − s2),

respectively, where s1, s2 ∈ Dn. Based on Ψ, we then define the following statistic:

Sn =
∑

x∈Ψ∩Dn

λ(1)(x). (8)

Note that Q2(s1, s2) = λ(s1)λ(s2) [g(s1 − s2)− 1] since N is SORWS. Thus the covari-

ance matrix of Sn, where Sn is defined in (8), is given by

Cov(Sn) = λn

∫

Dn

λ(1)(s)[λ(1)(s)]′ds+(λn)2

∫∫

Dn

λ(1)(s1)[λ
(1)(s2)]

′

λ(s1)λ(s2)
Q2(s1, s2)ds1ds2. (9)

The first term on the right hand side of (9) depends only on the FOIF, and thus can be

estimated once a FOIF model has been fitted. The second term, interestingly, is (λn)2(Bn−

An). These facts suggest that if we can estimate Cov(Sn), then we can use the relationship

between Cov(Sn) and Bn to estimate Bn in an obvious way. Note that Sn is a statistic

defined on Ψ ∩ Dn, where Ψ is a second-order stationary process. Thus the problem of

estimating Bn becomes a problem of estimating the variance of a statistic calculated from

a SOS process, which we can accomplish by using the block bootstrap procedure.
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Toward that end, we divide Dn into kn subblocks of the same shape and size. Let Di
l(n),

i = 1, · · · , kn denote these subblocks, where l(n) = cnα for some c > 0 and α ∈ (0, 1)

signifies the subblock size. For each Di
l(n), let ci denote the “center” of the subblock, where

the “centers” are defined in some consistent way across all Di
l(n). We then resample with

replacement kn subblocks from all the available subblocks and “glue” them together so as

to create a new region that will be used to approximate Dn. We do so for a large number,

say B times. For the bth collection of random subblocks, let Jb be the set of kn random

indices sampled from {1, · · · , kn} that are associated with the selected subblocks. For each

event x ∈ D
Jb(i)
l(n) , we replace it with a new value x− cJb(i) + ci, so that all events in D

Jb(i)
l(n)

are properly shifted into Di
l(n). In other words, the ith sampled subblock, D

Jb(i)
l(n) , will be

“glued” at where Di
l(n) was in the original data. We then define

Sb
n =

kn∑
i=1

∑

x∈Ψ∩D
Jb(i)

l(n)

λ(1)(x− cJb(i) + ci), (10)

where the sum
∑

x∈Ψ∩D
Jb(i)

l(n)

is over all events in block D
Jb(i)
l(n) translated into block Di

l(n).

Based on the obtained Sb
n, b = 1, . . . , B, we can calculate the sample covariance of Sb

n and

use that as an estimate for Cov(Sn). Note that for a given realization of N on Dn, the

application of the thinning algorithm given in (7) can yield multiple thinned realizations.

This will in turn lead to multiple sample covariance matrices by applying the proposed

block bootstrap procedure. One possible solution is to simply average all the obtained

sample covariance matrices so as to produce a single estimate for Cov(Sn). To do so,

let K denote the total number of thinned processes, and Sb
n,j and S̄n,j denote Sb

n and the

bootstrapped mean of Sb
n, b = 1, · · · , B for the jth thinned process, respectively, where Sb

n
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is defined in (10). We thus obtain the following estimator for the covariance matrix of Sn:

̂Cov(Sn) =
1

K

K∑
j=1

B∑

b=1

(Sb
n,j − S̄n,j)(S

b
n,j − S̄n,j)

′

B − 1
(11)

3.2 Consistency and Practical Issues

To study the asymptotic properties of ̂Cov(Sn), we also assume the following condition:

1

|Dn|1/2

∫

Dn

∫

R2\Dn

|g(s1 − s2)− 1|ds1ds2 < C, (12)

where R2\Dn = {s : s ∈ R2 but s /∈ Dn}. Condition (12) is only slightly stronger than

∫
R2 |g(s) − 1|ds < C, which is implied by condition (6). In the case that Dn are regular

enough (e.g. a sequence of n× n squares) such that |(Dn + s) ∩ R2\Dn| < C||s|||Dn|1/2,

then condition (12) is implied by the condition
∫
R2 ||s|||g(s) − 1|ds < C, which holds for

any process that has a finite range of dependence. Furthermore, it holds for the LGCP, if

the correlation function of the underlying Gaussian random field generating the intensities

decays to zero at a rate faster than ||s||−3.

Theorem 2. Assume that conditions (2), (4), (5) and (6) hold. Then

1

|Dn|
̂Cov(Sn)

L2→ 1

|Dn|Cov(Sn).

If we further assume (12), then 1
|Dn|2 E{[ ̂Cov(Sn)−Cov(Sn)]2} ≤ C[1/kn + 1/|Dl(n)|] for

some C < ∞.

Proof. See Appendix B.

Theorem 2 establishes the L2 consistency of the proposed covariance matrix estimator

for a wide range of values for the number of thinned processes and the subblock size. To
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apply the proposed method in practice, however, these values must be determined. For

the former, one can in principle apply the proposed thinning algorithm as many times as

necessary until a stable estimator can be obtained. For the latter, Theorem 2 suggests that

the “optimal” rate for the subblock size is |Dn|1/2, where the word “optimal” is in the sense

of minimizing the mean squared error. This result agrees with the findings for the “optimal”

subblock size for other resampling variance estimators obtained from quantitative processes

(e.g. Sherman, 1996). If we assume further that the best rate can be approximated by

cn = c|Dn|1/2, where c is an unknown constant, then we can adapt the algorithm in Hall

and Jing (1996) to estimate cn and thus to determine the “optimal” subblock size.

Specifically, let Di
m, i = 1, · · · , k′n, be a set of subblocks contained in Dn that have the

same size and shape, Si
m,j be Sn in (8) obtained from the jth thinned process on Di

m, and

S̄m,j be the mean of Si
m,j . We then define the sample variance-covariance matrix of Si

m,j

averaged over the K replicate thinned point processes:

θ̂m =
1

K

K∑
j=1

k′n∑
i=1

(Si
m,j − S̄m,j)(S

i
m,j − S̄m,j)

′

k′n − 1
.

If Di
m is relatively small when compared to Dn, then the above should be a good estimator

for the true covariance matrix of Sm, where Sm is Sn in (8) defined on Dm. For each Di
m,

we then apply (11) to estimate Cov(Sm) over a fine set of candidate subblock sizes, say

c′m = c′|Di
m|1/2. Let θ̂m(j, k) and [θ̂i

m(j, k)]′ be the (j, k)th element of θ̂m and the resulting

estimator for using c′m, respectively. We define the best cm as the one that has the smallest

value for the following criterion:

M(c′m) =
1

k′n

k′n∑
i=1

p∑
j=1

p∑

k=1

{[θ̂i
m(j, k)]′ − θ̂m(j, k)}2.
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The “optimal” subblock size for Dn, i.e. cn, can then be estimated easily by using the

relationship cn = cm(|Dn|/|Dm|)1/2.

4 Simulations

4.1 Log Gaussian Cox Process

We performed a simulation study to test the results of our theoretical findings. On an

observation region D of size L × L, where L = 1, 2, 4, we simulated 1000 realizations of

an inhomogeneous Poisson process with intensity function λ(s) given by

log λ(s) = α + βX(s) + G(s), (13)

where G is a mean zero Gaussian random field. This is the LGCP model, with inhomo-

geneity due to the covariate X .

For values of X , we used a single realization from a different mean zero Gaussian

random field. This realization was kept fixed throughout the whole simulation study, i.e.

the same X was used for each of the 1000 point process realizations. Figure 1 shows a

surface plot of X for L = 4. The values of X for L = 1 and 2 are the lower left corner of

those shown in the figure. For G, we used the exponential model, C(h) = σ2 exp(−h/ρ),

for its covariance function, where ρ = 0.1, 0.2 and σ = 0.1. We set α and β to be 7.02 and

2, respectively. The point process patterns were generated using the rpoispp function in the

spatstat R package (Baddeley and Turner, 2005). The average number of points simulated

were about 1200, 4500 and 16700 for L = 1, 2, 4, respectively.

For each of the 1000 point patterns, the estimates α̂ and β̂ were obtained by maximizing
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the Poisson likelihood (using the ppm function in spatstat). The point pattern was next

thinned according to the criterion described in Section 3. Twenty independent thinned

processes were obtained for each realization. The average number of points in the thinned

patterns was roughly 490, 1590 and 5400 respectively for L = 1, 2 and 4, so about 30-

40% of the points were retained. The bootstrap procedure was then applied to each of the

thinned processes to get the variance estimates for α̂ and β̂. From (13), we find that the

quantities to be computed with each bootstrap sample are
∑

λ̂(s∗) and
∑

X(s∗)λ̂(s∗) for

α and β respectively, where s∗ represents the locations of the points in a bootstrap sample.

We used non-overlapping square blocks in the bootstrap procedure. For L = 1, we used

blocks with side length 1/4, 1/3 and 1/2, while for L = 2, 4, we used blocks of side length

1/4, 1/3, 1/2 and 1. The number of bootstrap samples used was 499.

The variances of α̂ and β̂ were computed from the bootstrap variances using Theorem

1, (9) and the relation of Cov(Sn) to Bn. The variance estimates were averaged across

the independent thinnings. Finally, nominal 95% confidence intervals were constructed,

yielding a total of 1000 confidence intervals for α and β.

Table 1 shows the empirical coverage of the confidence intervals for β. The coverage for

α (not shown) is similar but slightly lower. For both values of ρ, we find that the empirical

coverage increases towards the nominal level as the observation region size increases. This

increase in coverage agrees with what we expect from the theory. The empirical coverage

for ρ = 0.1 is typically closer to the nominal level than for ρ = 0.2. Note that ρ = 0.1

corresponds to a weaker dependence. Thus we expect our method to work better if the

dependence in the data is relatively weaker. It’s interesting to note that for L = 2, 4, the
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best coverage for ρ = 0.2 is achieved by using a block that is larger than its counterpart for

ρ = 0.1. Thus for errors with longer range dependence, it appears that the block bootstrap

procedure requires larger blocks to work well.

Table 2 shows the bootstrap estimates of the standard errors of β̂ for ρ = 0.2, averaged

over the 1000 realizations. The standard deviations of these estimates over the 1000 real-

izations are included in brackets. The “true” standard errors computed using the estimated

regression parameters from the independent realizations are also shown. The table shows

that the bootstrap estimates have a negative bias, becoming proportionally closer to the

“true” standard errors as the region size L increases.

In summary, we find that our method works reasonably well when the regression pa-

rameters are estimated. We find that there is a slight undercoverage in each instance, but

the undercoverage becomes smaller as the sample size increases. We also estimated the

standard errors by using the true regression parameters in our thinning step. The coverage

increases only slightly.

4.2 Inhomogeneous Neyman-Scott Process

Theorem 1 gives the variance in terms of the FOIF and the SOCF. Another approach for

the variance estimation is to use the plug-in method. As point out by one referee, we may

simply estimate the PCF or the K-function using the original data (Baddeley et al., 2000).

This will yield an estimate of the SOCF which can in turn be plugged into the expression for

Bn in Theorem 1 in order to obtain an estimate for the asymptotic variance. Waagepetersen

(2007) studied the performance of this method in the INSP case.
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To compare the performance of our method with the plug-in method, we also simulated

data from the INSP model given in Waagepetersen (2007). To do so, we first simulated a

homogeneous Poisson process with intensity κ = 50 as the parent process. For each parent,

we then generated a Poisson number of offspring. We defined the position of each offspring

relative to its parent by a radially symmetric Gaussian random variable (e.g. Diggle, 2003).

Let ω denote the standard deviation of the variable. We used ω = 0.02, 0.04, representing

relatively strong and weak clustering. Finally, we thinned the offspring as in Waagepetersen

(2007) by setting the probability to retain an offspring equal to the intensity at the offspring

location divided by the maximum intensity in the study region. For the intensity, we used

log λ(s) = α + βX(s), where α, β and X(s) were as defined in the LGCP case.

We simulated 1000 realizations of the process on both a 1 × 1 and a 2 × 2 square.

For each realization, we applied the thinned block bootstrap and the plug-in method in

Waagepetersen (2007) to estimate the standard errors of α̂ and β̂ and to further obtain their

respective 95% confidence intervals. For the plug-in method, we estimated the second-

order parameters, κ and ω, by a minimum contrast estimation procedure. Specifically, we

obtained these estimates by minimizing

∫ a

0

[K̂(t)−K(t; κ, ω)]2dt, (14)

with respect to (κ, ω) for a specified a, where K̂(t) and K(t; κ, ω) are the empirical

and theoretical K-functions, respectively. We used a = 4ω following the recommen-

dation of **** (2007). The estimated values of κ and ω were then used to estimate

the standard errors of α̂ and β̂. To do so, we used the inhom.thomas.asympcov func-

tion in the InhomCluster R package, which is available on Waagepetersen’s website at
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http://www.math.aau.dk/∼rw/sppcode/.

Table 3 shows the empirical coverage of the confidence intervals for β. As in the LGCP

case, there is a slight undercoverage, but the undercoverage appears to be less serious. In

particular, for L = 2 and ω = 0.02, the coverage is very close to the nominal level for all

block sizes being used. Furthermore, the coverage is better for ω = 0.02 than for ω = 0.04.

This is because the former yields a process with a weaker dependence than the latter. For

the plug-in method, we find that the coverage are all very close to the nominal level. Thus

our method does not perform as well as the plug-in method when the true SOCF is used.

However, the difference in coverage tends to diminish as the sample size increases. As

pointed out by Waagepetersen (2007), the performance of the plug-in method is affected

by the choice of the tuning parameter a in (14). In the simulation, we also considered using

the default value of a given by spatstat. Results not shown here suggested that the coverage

often were worse than those from our method.

5 An Application

We applied the proposed thinned block bootstrap procedure to a tropical rain forest data set

that was collected in a 1000× 500 meters plot in Barro Colorado Island. The data contain

measurements for over 300 species existing in the same plot in multiple years, as well as

information on elevation and gradient recorded on a 5 × 5 meters grid within the same

region. We were particularly interested in modeling the locations of 3605 Beilschmiedia

pendula Lauraceae (BPL) trees (see Figure 2) recorded in a 1995 census by using elevation

and gradient as covariates. The same data set was analyzed by Waagepetersen (2007), in
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which he considered the following FOIF model:

λ(s) = exp[β0 + β1E(s) + β2G(s)].

In the above, E(s) and G(s) are the (estimated) elevation and gradient at location s, re-

spectively. Waagepetersen (2007) fitted the model by maximizing the Poisson maximum

likelihood criterion given in (1). Specifically, he obtained the estimates β̂1 = 0.02 and

β̂2 = 5.84. To estimate the standard errors associated with these estimates, he assumed fur-

ther that the locations of the BPL trees were generated by an INSP. Based on the estimated

standard errors, he concluded that β2 was significant but β1 was not.

We reanalyzed the data since the INSP model was only a “crude” model for the data, as

pointed out by Waagepetersen (2007). The INSP model attributed the possible clustering

among the BPL trees to a one-round seed dispersal process. In reality, however, the cluster-

ing might be due to many different factors, e.g. important environmental factors other than

elevation and gradient, which had not been included in the model. Even if the clustering

was due to seed dispersal alone, it was probably due to seed dispersal that had happened in

multiple generations. As a result, the validity of the model, and the subsequent estimated

standard errors and inference on the regression parameters, should be further investigated.

Our proposed thinned blocking bootstrap method, on the other hand, required much weaker

conditions, and thus might yield more reasonable estimates for the standard errors and more

reliable inference on the regression parameters.

To estimate the standard errors for β̂1 and β̂2, we applied (12) with K = 100 and

B = 999, and used 200 × 100 meters subblocks. We chose K = 100 since the trace plots

for the estimated standard errors became fairly stable if 100 and more thinned realizations
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were used. The subblock size was selected by using the data-driven procedure discussed

at the end of Section 3. Table 4 gives the estimated standard errors for β̂1 and β̂2 by

using the thinned block bootstrap and the plug-in method in Waagepetersen (2007), and

the respective 95% confidence intervals based on these estimated standard errors. Note

that the intervals based on the thinned block bootstrap are slightly shorter than those from

the plug-in method, but nevertheless lead to the same conclusion as the plug-in method.

Specifically, they suggest that β2 is significant but β1 is not. From a biological point of

view, this means that the BPL trees prefer to live on slopes but do not really favor either

high or low altitudes. Thus our results formally confirmed the findings in Waagepetersen

(2007) by using less restrictive assumptions.

Appendix A: Proof of Theorem 1

Let β0 stand for the true regression parameter. For the ease of presentation but without

losing generality, we assume that β̂ and β0 are both scalars, i.e. p = 1. In the case of p > 1,

the proof can be easily generalized by the application of the Cramer-Wold device.

Lemma 1. Assume that conditions (4)-(6) hold. Then |Dn|2E{[U (1)
n (β0)]

4} < C for some

C < ∞.

Proof. By repeatedly using the Campbell’s theorem (e.g. Stoyan and Stoyan, 1994) and the

relationship between moments and cumulants, and by using the fact that λ(1)(s; β0)/λ(s; β0)

is bounded due to conditions (4) and (5), we can derive that |Dn|4E{[U (1)
n (β0)]

4} is bounded
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by the following (if ignoring some multiplicative constants):

∫ ∫ ∫ ∫
|Q4(s1, s2, s3, s4)|ds1ds2ds3ds4 +

[ ∫ ∫
|Q2(s1, s2)|ds1ds2

]2

+

∫ ∫ ∫
|Q3(s1, s2, s3)|ds1ds2ds3 + |Dn|

∫ ∫
|Q2(s1, s2)|ds1ds2

+

∫ ∫
|Q2(s1, s2)|ds1ds2,

where all the integrals in the above are over Dn. It then follows from condition (6) that the

above sum is of order |Dn|2. So the lemma is proved.

Proof of Theorem 1: First note that

U (1)
n (β) =

1

|Dn|
[ ∑

x∈N∩Dn

λ(1)(x; β)

λ(x; β)
−

∫
λ(1)(s; β)ds

]
,

U (2)
n (β) =

1

|Dn|
[ ∑

x∈N∩Dn

λ(2)(x; β)

λ(x; β)
−

∫
λ(2)(s; β)ds

]
− 1

|Dn|
∑

x∈N∩Dn

[λ(1)(x; β)

λ(x; β)

]2

:= U (2)
n,a(β)− U

(2)
n,b (β).

By using the Taylor expansion, we can obtain

|Dn|1/2(β̂n − β̂0) = −[U (2)
n (β̃n)]−1|Dn|1/2U (1)

n (β0),

where β̃n is between β̂n and β0. We need to show that

U (2)
n,a(β0)

p→ 0,

U
(2)
n,b (β0)

p→ 1

|Dn|
∫

[λ(1)(s; β0)]
2

λ(s; β0)
ds.

To show the first, note that E[U
(2)
n,a(β0)] = 0. Thus, we only need look at the variance term:

V ar
[
U (2)

n,a(β0)
]

=
1

|Dn|2
∫ ∫

λ(2)(s1; β0)λ
(2)(s2; β0)

λ(s1; β0)λ(s2; β0)
Q2(s1, s2)ds1ds2

+
1

|Dn|2
∫

[λ(2)(s; β0)]
2

λ(s; β0)
ds,
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which converges to zero due to conditions (4)-(6). Thus U
(2)
n,a(β0)

p→ 0.

To show the second, note that E
[
U

(2)
n,b (β0)

]
= 1

|Dn|
∫ [λ(1)(s;β0)]2

λ(s;β0)
ds. Thus, we again only

need to consider the variance term:

V ar
[
U

(2)
n,b (β0)

]
=

1

|Dn|2
∫ ∫

[λ(1)(s1; β0)λ
(1)(s2; β0)]

2

λ(s1; β0)λ(s2; β0)
Q2(s1, s2)ds1ds2

+
1

|Dn|2
∫

[λ(1)(s; β0)]
4

λ(s; β0)
ds,

which converges to zero due to conditions (4)-(6). Thus U
(2)
n,b (β0)

p→ 1
|Dn|

∫ [λ(1)(s;β0)]2

λ(s;β0)
ds.

Now we want to show that |Dn|1/2U
(1)
n (β0) converges to a normal distribution. Firstly,

we derive the mean and variance of |Dn|1/2U
(1)
n (β0). Clearly E

[
|Dn|1/2U

(1)
n (β0)

]
= 0.

For the variance,

V ar
[|Dn|1/2U (1)

n (β0)
]

=
1

|Dn|
∫ ∫

λ(1)(s1; β0)λ
(1)(s2; β0)

λ(s1; β0)λ(s2; β0)
Q2(s1, s2)ds1ds2

+
1

|Dn|
∫

[λ(1)(s; β0)]
2

λ(s; β0)
ds.

Now consider a new sequence of regions D∗
n, where D∗

n ⊂ Dn and |D∗
n|/|Dn| → 1 as

n →∞. Let U
(1)
n,∗(β0) be the estimating function for the realization of the point process on

D∗
n. Based on the expression of the variance, we can deduce that

V ar
[|Dn|1/2U (1)

n (β0)− |D∗
n|1/2U (1)

n,∗(β0)
] → 0 as n →∞.

Thus,

|Dn|1/2U (1)
n (β0) ∼ |D∗

n|1/2U (1)
n,∗(β0),

where the notation an ∼ bn means that an and bn have the same limiting distribution. Thus

we only need to show that |D∗
n|1/2U

(1)
n,∗(β0) converges to a normal distribution for some

properly defined D∗
n.
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To obtain a sequence of D∗
n, we apply the blocking technique used in Guan et al. (2004).

Let l(n) = nα, m(n) = nα − nη for 4/(2 + ε) < η < α < 1, where ε is defined as in

condition (3). We first divide the original domain Dn into some nonoverlapping l(n) ×

l(n) subsquares, Di
l(n), i = 1, · · · , kn; within each subsquare, we further obtain Di

m(n), an

m(n)×m(n) square sharing the same center with Di
l(n). Note that d(Di

m(n), D
j
m(n)) ≥ nη

for i 6= j. Now define

D∗
n = ∪kn

i=1D
i
m(n).

Condition (2) implies that |D∗
n|/|Dn| → 1. So we only need to show |D∗

n|1/2U
(1)
n,∗(β0)

converges to a normal distribution. This is true due to the mixing condition, the result in

Lemma 1, and the application of the Lyapunov’s central limit theorem. The proof similar

to that in Guan et al. (2004). We thus omit the details.

Appendix B: Proof of Theorem 2

To simplify notation, let ϕ(u)=g(u)−1, ϕk(s1, · · · , sk)=Qk(s1, · · · , sk)/[λ(s1) · · ·λ(sk)],

gk(s1, · · · , sk) = λk(s1, · · · , sk)/[λ(s1) · · ·λ(sk)] for k = 3, 4, and Z(s) = λ(1)(s). As in

the proof of Theorem 1, we assume that β̂ and β0 are both scalars, i.e. p = 1. As a result,

Z(s) is a scalar so that Cov(Sn) = V ar(Sn). Furthermore, we only consider the case

K = 1. Thus the covariance estimator defined in (11) becomes:

̂V ar(Sn) =
B∑

b=1

(Sb
n − S̄n)2

B − 1
.

As B goes to infinity, we see that the above converges to

V ar(Sb
n|Ψ ∩Dn)
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=
1

kn

kn∑
i=1

kn∑
j=1

∑

Dj
l(n)

∑

Dj
l(n)

Z(x1 − cj + ci)Z(x2 − cj + ci)

− 1

k2
n

kn∑
i=1

kn∑
j1=1

kn∑
j2=1

∑

D
j1
l(n)

∑

D
j2
l(n)

Z(x1 − cj1 + ci)Z(x2 − cj2 + ci),

where the notation
∑

D is short for
∑

D∩Ψ. We wish to show V ar(Sb
n|Ψ ∩ Dn)/|Dn|

converges in L2 to

1

|Dn|V ar(Sn) =
(λn)2

|Dn|
∫

Dn

∫

Dn

Z(s1)Z(s2)ϕ(s1 − s2)ds1ds2 +
λn

|Dn|
∫

Dn

[Z(s)]2ds.

To show this, we need to show the following:

1

|Dn|E[V ar(Sb
n|Ψ ∩Dn)] → 1

|Dn|V ar(Sn), (15)

1

|Dn|2V ar[V ar(Sb
n|Ψ ∩Dn)] → 0. (16)

To show (15), note that

E[V ar(Sb
n|Ψ ∩Dn)]

= (λn)2

kn∑
i=1

∫ ∫

Di
l(n)

Z(s1)Z(s2)g(s1 − s2)ds1ds2 +
λn(kn − 1)

kn

∫

Dn

[Z(s)]2ds

− (λn)2

k2
n

kn∑
i=1

kn∑
j1=1

kn∑
j2=1

∫ ∫

Di
l(n)

Z(s1)Z(s2)g(s1 − s2 + cj1 − cj2)ds1ds2.

Thus,

1

|Dn|
{
E[V ar(Sb

n|Ψ ∩Dn)]− V ar(Sn)
}

= − λn

kn|Dn|
∫

Dn

[Z(s)]2ds− (λn)2

|Dn|
∑∑

i6=j

∫

Di
l(n)

∫

Dj
l(n)

Z(s1)Z(s2)ϕ(s1 − s2)ds1ds2

− (λn)2

|Dn|
1

k2
n

kn∑
i=1

kn∑
j1=1

kn∑
j2=1

∫ ∫

Di
l(n)

Z(s1)Z(s2)ϕ(s1 − s2 + cj1 − cj2)ds1ds2

:= −T 1
n − T 2

n − T 3
n .
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T 1
n goes to zero due to conditions (2) and (5). For T 2

n and T 3
n , lengthy yet elementary

derivations yield:

|T 2
n | ≤ C(λn)2

|kn|
kn∑
i=1

[ 1

|Dn|
∫

Dn−Dn

|Dn ∩ (Dn − s)||ϕ(s)|ds

− 1

|Di
l(n)|

∫

Di
l(n)

−Di
l(n)

|Di
l(n) ∩ (Di

l(n) − s)||ϕ(s)|ds
]
,

T 3
n ≤ C(λn)2

kn

1

|Dn|
∫

Dn

∫

Dn

|ϕ(s1 − s2)|ds1ds2.

Both terms converge to zero due to conditions (2), (4), (5) and (6). Thus (15) is proved.

Furthermore, we can see that the order of T 1
n and T 3

n are both 1/kn, while that of T 2
n is

1/|Dl(n)|1/2 due to condition (12).

To prove (16), we first note that [V ar(Sb
n|Ψ∩Dn)]2 is equal to the sum of the following

three terms:

1
k2

n

∑kn

i1=1

∑kn

i2=1

∑kn

j1=1

∑kn

j2=1

∑
D

j1
l(n)

∑
D

j1
l(n)

∑
D

j2
l(n)

∑
D

j2
l(n)

[
Z(x1 − cj1 + ci1)Z(x2 − cj1 + ci1)Z(x3 − cj2 + ci2)Z(x4 − cj2 + ci2)

]

− 2
k3

n

∑kn

i1=1

∑kn

i2=1

∑kn

j1=1

∑kn

j2=1

∑kn

j3=1

∑
D

j1
l(n)

∑
D

j1
l(n)

∑
D

j2
l(n)

∑
D

j3
l(n)

[
Z(x1 − cj1 + ci1)Z(x2 − cj1 + ci1)Z(x3 − cj2 + ci2)Z(x4 − cj3 + ci2)

]

1
k4

n

∑kn

i1=1

∑kn

i2=1

∑kn

j1=1

∑kn

j2=1

∑kn

j3=1

∑kn

j4=1

∑
D

j1
l(n)

∑
D

j2
l(n)

∑
D

j3
l(n)

∑
D

j4
l(n)

[
Z(x1 − cj1 + ci1)Z(x2 − cj2 + ci1)Z(x3 − cj3 + ci2)Z(x4 − cj4 + ci2)

]

Furthermore, the following relationships are possible for x1, · · · ,x4:

a) x1 = x2 = x3 = x4

26



b) x1 = x2 and x3 = x4 but x1 6= x3, or x1 = x3 and x2 = x4 but x1 6= x2

c) x1 6= x2 but x2 = x3 = x4, or x3 6= x4 but x1 = x2 = x3

d) x1 6= x2 6= x3 but x3 = x4, or x1 6= x2 6= x3 but x1 = x4,

or x2 6= x3 6= x4 but x1 = x2

e) x1 6= x2 6= x3 6= x4

When calculating the variance of 1
|Dn|V ar(Sb

n|Ψ ∩ Dn), the above relationships, com-

bined with the expressions for the squared value of 1
|Dn|E[V ar(Sb

n|Ψ ∩ Dn)], in turn lead

to integrals of different complexity. To save space, we present only the integral from term

e). The remaining integrals can be shown to have order no higher than 1/kn in a similar

manner.

Let F1(s1, s2, s3, s4) = g4(s1, s2, s3, s4) − g(s1, s2)g(s3, s4). Term e) leads to the fol-

lowing integral:

(λn)4

k2
n|Dn|2

kn∑
i1=1

kn∑
i2=1

kn∑
j1=1

∫

D
j1
l(n)

Z(s1 − cj1 + ci1)

[ kn∑
j2=1

∫

D
j1
l(n)

∫

D
j2
l(n)

∫

D
j2
l(n)

Z(s2 − cj1 + ci1)Z(s3 − cj2 + ci2)Z(s4 − cj2 + ci2)

F1(s1, s2, s3, s4)ds2ds3ds4

− 2

kn

kn∑
j2=1

kn∑
j3=1

∫

D
j1
l(n)

∫

D
j2
l(n)

∫

D
j3
l(n)

Z(s2 − cj1 + ci1)Z(s3 − cj2 + ci2)Z(s4 − cj3 + ci2)

F1(s1, s2, s3, s4)ds2ds3ds4

+
1

k2
n

kn∑
j2=1

kn∑
j3=1

kn∑
j4=1

∫

D
j2
l(n)

∫

D
j3
l(n)

∫

D
j4
l(n)

Z(s2 − cj2 + ci1)Z(s3 − cj3 + ci2)Z(s4 − cj4 + ci2)

F1(s1, s2, s3, s4)ds2ds3ds4

]
ds1.

Let F2(s1, s2, s3, s4)=ϕ4(s1, s2, s3, s4)+2ϕ3(s1, s2, s3)+2ϕ3(s1, s3, s4)+2ϕ(s1−s3)ϕ(s2−

s4). By noting that Z(·) is bounded, we can derive from lengthy yet elementary algebra
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that the above is bounded by:

2C(λn)4

kn|Dn|2
kn∑

j1=1

∫

D
j1
l(n)

∫

D
j1
l(n)

∫

Dn

∫

Dn

|F2(s1, s2, s3, s4)|ds1ds2ds3ds4

+
C(λn)4

|Dn|2
kn∑

j1=1

kn∑
j2=1

∫

D
j1
l(n)

∫

D
j1
l(n)

∫

D
j2
l(n)

∫

D
j2
l(n)

|F1(s1, s2, s3, s4)|ds1ds2ds3ds4.

The first integral in the above is of order 1/kn due to conditions (4), (5) and (6). The second

integral is bounded by

C(λn)4

|Dn|2
kn∑

j1=1

kn∑
j2=1

∫

D
j1
l(n)

∫

D
j1
l(n)

∫

D
j2
l(n)

∫

D
j2
l(n)

|ϕ4(s1, s2, s3, s4)|ds1ds2ds3ds4

+
4C(λn)4

kn|Dn|
kn∑

j2=1

∫

Dn

∫

D
j2
l(n)

∫

D
j2
l(n)

|ϕ3(s1, s3, s4)|ds1ds3ds4

+
2C(λn)4

|Dn|2
kn∑

j1=1

kn∑
j2=1

[ ∫

D
j1
l(n)

∫

D
j2
l(n)

|ϕ(s1, s3)|ds1ds3

]2

.

The above is of order 1/kn + an due to conditions (4), (5), (6) and (12), where the order of

an is no higher than 1/|Dl(n)|.

Appendix C: Justification for Using β̂n in the Thinning Step

Let pn(x; θ) = mins∈Dn λ(s; θ)/λ(x; θ) and r(x) be a uniform random variable in [0, 1]. If

r(x) ≤ pn(x; θ), where x ∈ (N ∩Dn), then x will be retained in the thinned process, say

Ψ(θ). Based on the same set {r(x) : x ∈ (N ∩Dn)}, we can determine Ψ(θ0) and Ψ(θ̂n).

Note that Ψ(θ0) is Ψ defined in (7) using the true FOIF. Define Ψa = {x ∈ Ψ(θ0),x /∈

Ψ(θ̂n)} and Ψb = {x /∈ Ψ(θ0),x ∈ Ψ(θ̂n)}. Note that P (x ∈ Ψa ∪ Ψb|x ∈ N) ≤

|pn(x; θ̂n)− pn(x; θ0)|. We need to show that

1

|Dn|
{

V ar[Sb
n|Ψ(θ0) ∩Dn]− V ar[Sb

n|Ψ(θ̂n) ∩Dn]
}

p→ 0,
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where V ar[Sb
n|Ψ(θ0)∩Dn] is V ar(Sb

n|Ψ∩N) defined in Appendix B. V ar[Sb
n|Ψ(θ̂n)∩Dn]

is defined analogously.

Let
∑

D and
∑∑ 6=

D denote
∑

D∩(Ψa∪Ψb)
and

∑∑
x1,x2∈D∩(Ψa∪Ψb),x1 6=x2

. Note that

1

|Dn|
∣∣∣V ar[Sb

n|Ψ(θ0) ∩Dn]− V ar[Sb
n|Ψ(θ̂n) ∩Dn]

∣∣∣

<
C

|Dn|kn

kn∑
i=1

kn∑
j=1

∑

Dj
l(n)

∑

Dj
l(n)

1 +
C

|Dn|k2
n

kn∑
i=1

kn∑
j1=1

kn∑
j2=1

∑

D
j1
l(n)

∑

D
j2
l(n)

1

=
C

|Dn|
kn∑
j=1

6=∑∑

Dj
l(n)

1 +
C

|Dn|
∑
Dn

1 +
C

|Dn|kn

[∑
Dn

1
]2

.

Note that P [x ∈ (Ψa ∪ Ψb)|x ∈ N ] ≤ C
|Dn|α/2 with probability 1 for 0 < α < 1 due to

Theorem 1. Thus all three terms in the above converge to zero in probability. This in turn

leads to the consistency of the variance estimator.
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Figure 1: Image of the covariate X used in the simulation. The range of X is between

-0.6066 and 0.5303, where darker colors represent larger values of X .
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Figure 2: Locations of Beilschmiedia pendula Lauraceae trees.
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ρ = .1 Block size ρ = .2 Block size

Region size 1/4 1/3 1/2 1 Region size 1/4 1/3 1/2 1

1 .85 .77 .49 - 1 .84 .76 .50 -

2 .91 .90 .88 .49 2 .87 .88 .87 .50

4 .93 .93 .93 .90 4 .88 .89 .90 .89

Table 1: Empirical coverage of 95% nominal confidence intervals of β in the LGCP case.

ρ = .2 Block size

Region size true SE 1/4 1/3 1/2 1

1 .24 .17 (.04) .16 (.05) .13 (.06) -

2 .12 .10 (.02) .10 (.02) .10 (.03) .08 (.03)

4 .07 .056 (.003) .057 (.004) .060 (.006) .060 (.008)

Table 2: Estimates of the standard errors of β̂ for ρ = .2 in the LGCP case.

ω = .02 Block size ω = .04 Block size

Region size Plug-in 1/4 1/3 1/2 Region size Plug-in 1/4 1/3 1/2

1 .96 .91 .89 .81 1 .93 .87 .87 .77

2 .96 .94 .94 .94 2 .95 .90 .90 .91

Table 3: Empirical coverage of 95% nominal confidence intervals of β obtained by the

thinned block bootstrap method and the plug-in method in the INSP case.
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Plug-in method Thinned block bootrap

EST STD 95% CI STD 95% CI

β1 .02 .02 (-.02,.06) .017 (-.014,.054)

β2 5.84 2.53 (.89,10.80) 2.12 (1.69,9.99)

Table 4: Results for for the Beilschmiedia pendula Lauraceae data. The abbreviations

EST, STD and CI denote the point estimate of the regression parameters by maximizing

(1), standard deviation and confidence interval, respectively.
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